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a b s t r a c t

In saline fields, irrigation management often requires understanding crop responses to soil moisture and
salt content. Developing models for evaluating the effects of soil moisture and salinity on crop yield is
important to the application of irrigation practices in saline soil. Artificial neural network (ANN) and
multi-linear regression (MLR) models respectively with 10 (ANN-10, MLR-10) and 6 (ANN-6, MLR-6)
input variables, including soil moisture and salinity at crop different growth stages, were developed to
simulate the response of sunflower yield to soil moisture and salinity. A connection weight method is
used to understand crop sensitivity to soil moisture and salt stress of different growth stages. Compared
with MLRs, both ANN models have higher precision with RMSEs of 1.1 and 1.6 t ha−1, REs of 12.0% and
17.3%, and R2 of 0.84 and 0.80, for ANN-10 and ANN-6, respectively. The sunflower sensitivity to soil

salinity varied with the different soil salinity ranges. For low and medium saline soils, sunflower yield
was more sensitive at crop squaring stage, but for high saline soil at seedling stage. High soil moisture
content could compensate the yield decrease resulting from salt stress regardless of salt levels at the crop
sowing stage. The response of sunflower yield to soil moisture at different stages in saline soils can be
understood through the simulated results of ANN-6. Overall, the ANN models are useful for investigating
and understanding the relationship between crop yield and soil moisture and salinity at different crop

growth stages.

. Introduction

Salinity has remained an important threat to global agriculture
Lobell et al., 2007), which is becoming more prevalent with the
ntensity of land use increase worldwide (Meloni et al., 2003). In
rid and semi-arid regions, saline soils are especially abundant, in
hich the evaporation is intense and the amount of rainfall is insuf-
cient for substantial leaching. Thus, salinity is one of the main

imiting factors for agricultural production in these areas.
Reducing root-zone salinity is a beneficial strategy for improving

rop emergence and stand establishment in saline fields (Clermont-
auphina et al., 2010). Water management is the most readily
vailable modifier of salt stress in the root-zone. An understand-
ng of plant responses to water and salinity is of great practical

ignificance. Recently, numerous studies have been carried out
o investigate plant response to water and salt stress (Bassil
nd Kaffka, 2002; Katerji et al., 2003; Ashish et al., 2009; Chen
t al., 2009; Clermont-Dauphina et al., 2010; Harris et al., 2010).
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However, decision-making processes in agriculture often require
reliable crop response models to assess the impact of specific
management practices and environmental conditions. Mathemat-
ical models prove to be a useful tool to define the best water
management in saline conditions. There are two distinct mod-
eling approaches, empirical and process models, for identifying
crop yield responses to given environmental conditions and man-
agement options (James and Cutforth, 1996). Technologically,
empirical crop growth models are relatively simple to build or
develop, but these models are generally linear and have a lower
modeling ability for complex ecological systems. Process-based
crop growth models are often preferred to empirical ones, but these
deterministic models need to identify many parameters (Sinclair
and Seligman, 1996; Matthews, 2002a,b; Ziaei and Sepaskhah,
2003). Notably, deterministic calibration is very difficult in most
cases (Ma et al., 2009). So an empirical model may offer an even
more reliable method in investigating crop responses than poorly

calibrated process models when the necessary data are avail-
able (Park et al., 2005). However, the traditional regression-based
empirical models lack non-linear modeling ability for complex
ecological systems, which is apparent in crop responses to agro-
ecological conditions.
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Artificial neural network (ANN) methodology is an alterna-
ive modeling and simulation tool, which is specially designed
or dynamic nonlinear systems. One of the most important traits
f ANN models is their ability to adapt to recurrent changes and
etect patterns in complex natural systems. During the last decade,
here has been a significant increase in agronomic ANN applica-
ion (Huang et al., 2010), including crop development modeling
Zhang et al., 2009; Fortin et al., 2010), crop yield prediction (Park
t al., 2005; Green et al., 2007; Khazaei et al., 2008), evapotranspi-
ation estimations (Dai et al., 2009; Liu et al., 2009), and soil water
nd salt content assessments (Zou et al., 2010). Kaul et al. (2005)
nvestigated the artificial neural network models performance in
redicting corn and soybean yields for typical climatic conditions,
nd came to the conclusion that ANN models consistently produced
ore accurate yield predictions than regression models. Alvarez

2009) used an artificial neural network approach to model the
ffects of soil and climate factors on average regional yield and
roduction of wheat in the Argentine Pampas and found that ANN
erformed better in regional yield estimation than the regression
r the blind guess methods. However, the ANN approach rarely
as been used to model crop yield responses to soil environments,
specially to soil moisture and soil salinity.

The objectives of this study are: (1) to develop an ANN model
o determine the relationship between crop yield and soil mois-
ure and salinity, and (2) to simulate the response of crop yield to
ifferent soil moisture and saline environments.

. Materials and methods

.1. Field experiment

The study was conducted at the Shahaoqu Experimen-
al Station in the Hetao Irrigation District (40◦19′–41◦18′N,
06◦20′–109◦19′E), situated in the west side of the Inner Mongolia
utonomous Region, China. The region has an arid continental cli-
ate. Annual average temperature is 8.1 ◦C, with monthly mean

emperature ranging from −10.1 ◦C in January to 23.8 ◦C in July. The
oil is usually frozen for 5–6 months from late November to middle
ay. Frost-free days are for 135–150 d and annual sunshine dura-

ion is 3100–3300 h. Average annual precipitation is 150 mm with
bout 60% occurring between July and August. Potential evapora-
ion is about 2200–2400 mm yr−1 (Feng et al., 2005). The physical
nd chemical properties in the experimental fields are listed in
able 1.

An experiment was set up from 2003 to 2005. Sunflower
Helianthus annuus L.) was designated as the experimental crop.
xperimental plots were arranged in a split plot design with
hree replications. Three soil salinity levels (0.2–0.5, 0.5–0.8,
.8–2.1 dS m−1) at crop sowing stage were the main plots. Four irri-
ation schedules (3 deficits and 1 sufficient) were the subplots. The
ubplots size was 4 × 10 = 40 m2. The detailed treatments are listed
n Table 2. At the beginning of the experiments, soil saturated mois-
ure content (�s) and field capacity (�f) was respectively 35% and
6%.

Sunflower (cv. KANGDI115) was planted on May 27, 2003, June
4, 2004 and June 3, 2005 with a spacing of 0.3 × 0.5 m and har-
ested on September 15, 2003, September 28, 2004 and September
9, 2005, respectively. Fertilization, weeding and other cultural
anagements were executed following local farmers’ practices,
hich were similar among three years.
Soil samples were collected at crop sowing, seedling, squaring
i.e. floral bud initiation), flowering and maturity growth stages
ccording to a systematic sampling design across the S-shaped
ransects. Six soil cores were collected from every plot and soil
ores were divided into five depths (0–20, 20–40, 40–60, 60–80,
Fig. 1. Three-layer feed-forward ANN architecture.

and 80–100 cm), composited and mixed by depth. Soil moisture
content was determined using gravimetric methods and electri-
cal conductivity (EC) of soil (water:soil ratio of 5:1, dS m−1) was
measured by digital conductivity meter. For each plot, soil mois-
ture content and EC of different soil depths at crop every growth
stages were respectively averaged as the soil moisture content and
EC of its corresponding stages. At sunflower harvest, grain yield was
measured from a 9 m2 area in each plot.

2.2. Artificial neural networks

Of many ANN architectures reported, the back-propagation net-
work (BP) have a simple structure for simulating complex system,
and it is enough robust for the simulation of any non-linear system
(Haykin, 1998). So the BP network was used in the study. The net-
work consists of layers of parallel processing elements (neurons),
with each layer being fully connected to the preceding layer by
interconnection strengths or weights (W). Fig. 1 illustrates a three-
layer neural network consisting of layers l − 1, l and l + 1 with the
interconnection weights Wij and Wjk between the neurons from
adjacent layers.

Training a network includes a forward propagation of inputs and
a backward propagation of errors. In the forward procedure, the
effect of an applied activity pattern in input layer was propagated
layer by layer through the network. The activation value al

j
at jth

neuron in lth layer is given by the following equation:

al
j =

n∑
i=1

WijO
l−1
i

+ bl
j, i = 1, 2, 3, . . . , n, j = 1, 2, 3, . . . , m (1)

where Wij is the interconnection weight between the jth neuron in
lth layer and the ith neuron in (l − 1) layer, Ol−1

i
is the output of the

ith neuron in the (l − 1)th layer, bl
j

is the bias of the jth neuron in
the lth layer. The activation value of a neuron was used to obtain
its output value through a transfer function. The general sigmoidal
logistic transfer function that can express any complex relationship
was used in this study. It is given by:

f (al
j) = 1

1 + exp(−al
j
)

(2)

where exp denotes the natural exponential function. The function
value of each neuron in the output layer was obtained by the input
effect propagating layer by layer. The goal of ANN is to establish a
relation of the form as expressed by:

Yt = f (Xs) (3)
where Xs is an s dimensional input predictor vector consisting of x1,
x2, . . ., xs and Yt is a t dimensional output or target vector consist-
ing of prediction variables of interest y1, y2, . . ., yt. Normally, the
network is trained by a back-propagation algorithm and conjugate
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Table 1
Soil properties of the experimental field.

Soil depth (cm)

0–20 20–40 40–60 60–80 80–100 100–120
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Bulk density (g cm ) 1.51 1.52
Sand (%) 18.0 13.6
Silt (%) 66.0 70.4
Clay (%) 16.0 16.0

radient learning algorithms, which adjusts the weights and biases
o minimize the error. The error function is

=
∑

p

∑
t

(yr − or)2 (4)

here E is error value, yr the ANN computed yield of sample r, or the
bserved yield of sample r and p the number of training patterns or
ata sets.

In this study, we used the resampling method with cross-
alidation for training ANN. Total 108 samples were randomly
veragely divided into 4 groups in which three groups were chosen
o train ANN and the remainder was used to test ANN. Every ANN
as trained four times using four different data sets. During net-
ork training phase, the training samples were processed through

he ANN. Afterwards, the connection weights and biases were auto-
atically adjusted until the maximal training times was achieved.

ollowing training, the ANN was tested with the testing data set to
ssess its ability of generalizing system behavior.

In designing a robust and accurate ANN model, the modeler
ust address a number of important factors, including of type

nd structure of neural network (nodes number of hidden layer),
nput variables used, and data pre-processing, which are generally
ccomplished through a combination of best professional judg-
ent, heuristic rules, and trial and error. The development of ANNs
as performed with Matlab 6.5.

.3. Connection weight method for quantifying variable
mportance in ANNs

Prediction accuracy is a major benefit of ANN models, but
he ANN models of any physical process are purely black box

odels, which not to explain the process being simulated, and

hose utility is limited without information regarding the rela-

ive importance of the parameters in the system. The development
f a method to couple input factors to meaningful output in ANN
odels is of critical importance (Kemp et al., 2007). The data

mployed for developing ANN models do contain important infor-

able 2
reatments in different saline soils.

Treatmenta Percentage of field capacity

Seedling Squaring Flowering

S1D1 70% 100% 100%
S1D2 100% 55% 100%
S1D3 100% 100% 40%
S1D0 100% 100% 100%

S2D1 100% 70% 100%
S2D2 100% 100% 55%
S2D3 40% 100% 100%
S2D0 100% 100% 100%

S3D1 100% 100% 70%
S3D2 55% 100% 100%
S3D3 100% 40% 100%
S3D0 100% 100% 100%

a S1, S2, S3 denote three soil salinity level; D1, D2, D3 denote insufficient irrigation, D0
1.47 1.46 1.46 1.46
1.2 15.5 18.0 2.8
6.8 73.5 68.0 70.2
2.0 11.0 14.0 27.0

mation regarding the physical process being simulated (Jain et al.,
2008).

A connection weight approach was used to evaluate the impor-
tance of inputs (soil moisture and salinity) to output (crop yield) in
ANNs. The connection weight method is to sum the products of the
input-hidden and the hidden-output connection weights between
each input neuron and output neuron for all input variables (Olden
et al., 2004). The relative contributions of the inputs to the output
are dependent on the magnitude and direction of the connection
weights. When the signs of the input-hidden and hidden-output
connection weights are the same (i.e., either both are positive or
both are negative), the input has a positive impact on the output.
Contrarily, if the signs of these connection weights are opposite,
the specific input has a negative effect on the output. The overall
contribution of the input to the output depends on its sum of the
positive and negative effect across all different hidden nodes. The
larger the sum of the connection weights, the greater the impor-
tance of the variable. The relative importance of input variable i is
determined through the following formula:

RIi =
∑m

j=1WijWjk∑n
i=1

∑m
j=1WijWjk

× 100%, i = 1, 2, 3, . . . , n, j

= 1, 2, 3, . . . , m (5)

where RIi is the relative importance (expressed in percentage) of
the variable i in the input layer on the output variable, j the index
number of the hidden node, Wij is the connection weight between
input variable i and hidden node j, and Wjk is the connection weight
between hidden node j and the output node k. The whole compu-
tation was repeated for each output neuron.

2.4. Evaluation criterion of model
To quantify the deviation in simulated results of ANN and multi-
linear regression (MLR) from the observed data, three statistical
parameters, including root mean squared error (RMSE), relative
error (RE) and coefficient of determination (R2), were used in this

Soil salinity at sowing stage (EC, dS m−1)

Maturity

100%

0.21–0.5
100%
100%
100%

100%

0.5–0.8
100%
100%
100%

100%

0.8–2.1
100%
100%
100%

denote sufficient irrigation.
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Fig. 2. Correlations of soil salinity at c

tudy. The three parameters were calculated as following:

MSE =

√√√√1
n

n∑
h=1

(Sh − Mh)2 (6)

E = 1
n

(
n∑

h=1

∣∣∣Sh − Mh

Mh

∣∣∣
)

(7)

2 =
[∑

(Sh − S̄)(Mh − M̄)
]2∑

(Sh − S̄)
∑

(Mh − M̄)
(8)
here Sh and Mh are the simulated and measured sunflower yield,
espectively, S̄ and M̄ the average values of the data arrays of Sh and

h, respectively, and n is the observed sample number.

able 3
oil moisture content and electric conductivity (EC) ranges in sunflower different growth

Growth stages

Sowing S

Soil moisture content (%) Lowest 13.6
Highest 30.4
Average 24.0

Soil EC (dS m−1) Lowest 0.21
Highest 2.10
Average 0.60
wing stage with other growth stages.

3. Results

3.1. Artificial neural network model development

3.1.1. Input and output variables
One of the most important steps in the ANN development pro-

cess is to determine input variables. For saline soil, sunflower
growth is significantly influenced by soil moisture and salinity,
and its response to water and salinity stress varies in different
growth stages (Chen et al., 2009). In this study, soil moisture con-
tent and salinity at crop different growth stages were considered
as the ANN input variables. As a result, 10 input variables (soil
moisture content and EC of sunflower sowing, seedling, squaring,
flowering and maturity stages) were included in the ANN. Fur-
thermore, there was a significant positive relationship between
soil EC at crop sowing stage and those at other growth stages

(Fig. 2). Thus, an ANN with 6 input variables, including soil EC at
crop sowing stage and soil moisture content at sowing, seedling,
squaring, flowering and maturity growth stages, was also devel-
oped in this study. The outputs of the ANNs were sunflower grain
yields.

stages.

eedling Squaring Flowering Maturity

10.9 11.1 13.5 13.6
28.9 28.2 29.6 27.1
20.6 20.3 21.9 20.2

0.17 0.18 0.16 0.27
2.09 3.00 1.87 2.10
0.57 0.63 0.57 0.65
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Table 4
Error changes with the nodes of the hidden layer for ANN-10.

Nodes 8 10 12 14 16 18 20 22 24 26 28

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Training data
RMSE (t ha−1) 1.4 0.68 0.8 0.25 0.6 0.17 0.3 0.09 0.3 0.08 0.3 0.06 0.3 0.06 0.3 0.06 0.3 0.06 0.3 0.06 0.3 0.06
RE (%) 15.1 7.10 8.9 2.93 5.6 1.64 3.8 1.10 3.8 0.84 3.8 0.76 3.8 0.76 3.9 0.76 3.9 0.76 3.9 0.76 3.9 0.76
R2 0.62 0.15 0.71 0.12 0.83 0.08 0.85 0.08 0.85 0.08 0.85 0.08 0.85 0.08 0.85 0.08 0.85 0.08 0.85 0.08 0.85 0.08

Testing data
RMSE (t ha−1) 2.4 0.72 1.8 0.44 1.3 0.25 1.1 0.12 1.2 0.11 1.1 0.11 1.3 0.12 1.6 0.14 2.2 0.18 2.4 0.17 2.5 0.19
RE (%) 27.9 7.97 22.3 5.15 14.9 2.80 12.9 1.34 12.5 1.26 12.0 1.18 14.5 1.38 19.0 1.67 24.3 1.98 26.7 1.89 27.9 2.11
R2 0.54 0.17 0.61 0.15 0.70 0.13 0.81 0.10 0.82 0.1 0.84 0.10 0.71 0.11 0.59 0.11 0.61 0.11 0.59 0.12 0.63 0.12

Table 5
Error changes with the nodes of the hidden layer for ANN-6.

Nodes 4 6 8 10 12 14 16 18 20 22

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Training data
RMSE (t ha−1) 2.8 0.86 1.7 0.33 0.7 0.20 0.4 0.11 0.4 0.08 0.4 0.08 0.4 0.08 0.4 0.08 0.4 0.08 0.4 0.08
RE (%) 30.3 10.04 18.0 3.68 8.4 2.52 4.9 1.18 4.1 0.82 4.1 0.82 4.1 0.82 4.1 0.82 4.1 0.82 4.1 0.82
R2 0.57 0.16 0.70 0.14 0.79 0.13 0.83 0.10 0.83 0.10 0.83 0.10 0.83 0.10 0.83 0.10 0.83 0.10 0.83 0.10

Testing data
RMSE (t ha−1) 3.2 0.91 2.7 0.38 1.9 0.34 1.6 0.22 1.7 0.13 2.0 0.11 2.4 0.11 2.7 0.12 3.5 0.39 3.5 0.38
RE (%) 34.3 10.33 28.8 4.17 20.1 3.70 17.3 2.46 19.9 1.47 22.4 1.25 26.5 1.21 30.9 1.34 33.2 3.72 36.2 3.95
R2 0.42 0.18 0.60 0.15 0.72 0.15 0.80 0.12 0.75 0.14 0.64 0.14 0.61 0.16 0.58 0.16 0.50 0.15 0.43 0.16
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The ranges of inputs variables are listed in Table 3. The experi-
ental data (108 samples), including sunflower yield, soil moisture

ontent and EC of different growth stages, were randomly aver-
gely divided into 4 groups in which three groups were chosen to
rain ANN and the remainder was used to test ANN. Every ANN was
rained four times using four different data sets.

.1.2. Network architecture
The neurons of the hidden layer in the BP neural network were

etermined by trial and error. For training and testing results from
NNs, the RMSE, RE, and R2 with different node numbers of the hid-
en layers were compared to select the optimal node numbers of
he hidden layers (Tables 4 and 5). For the training data of ANN-10,
he RMSE and RE were the lowest and R2 was the highest when the
idden node was equal to 14 or more. However, for the testing data,
he ANN-10 with the node of 18 produced the lowest RMSE and RE
nd the highest R2, and when the node number was more or less
han 18, the RMSE and RE increased and R2 decreased. For the train-
ng data of ANN-6, the ANN model had the lowest RMSE and RE and
he highest R2 when the node number was 10 or more. For the test-
ng data, the model with the hidden node of 10 had a lowest RMSE
nd RE, and a highest R2. Fewer hidden units resulted in under-
tting due to the shortage of enough processing units to map the

nput/output fitting relationship. With more neurons (more than 18
nd 10 for ANN-10 and ANN-6, respectively) in the hidden layer, the
etwork became overfitted, which showed that it was capable of fit-
ing the training data very well but not to generalize the unknown
nputs (i.e., testing data from all data). In addition, more hidden
eurons increased the network training time significantly. There-

ore, the optimal network structures were 10-18-1 and 6-10-1 for
he two ANNs, respectively.

.1.3. Training result of ANN model
After training of ANNs, testing data were used to determine the

rrors of model. The RMSE range of ANN-10 was from 0.1–3.2 t ha−1,
nd the RE was from 2.9% to 32.4%, whereas the ANN-6 produced a
igger RMSE and RE range, which was 0.2–3.6 t ha−1 and 5.5–38.9%
or RMSE and RE, respectively (Table 6). The average RMSE, RE, and
2 were 1.1 t ha−1, 12.0%, and 0.84 for ANN-10, and 1.6 t ha−1, 17.3%
nd 0.80 for ANN-6, respectively. Comparably, the ANN-10 had a
ower RMSE and RE, and a larger R2 than ANN-6 (Fig. 3 and Table 6).

To evaluate the effect of ANNs, two MLRs (10 and 6 input vari-
bles) were developed and tested using the same set of data used
or the ANNs developing and calibrating. Similar to the ANNs, the

LR with 10 input variables had a lower RMSE and RE, and a larger
2 than MLR with 6 input variables (Fig. 3 and Table 6). But the
MSE and RE of MLR-10 were higher than those of ANN-10, and R2

as lower than that of ANN-10 and MLR-6 had also a higher RMSE
nd RE and a lower R2 compared to ANN-6 (Table 6). Even though
or the ANN with 6 input variables, it also performed better than

LR with 10 input variables. As a whole, the calibrated ANNs had
igher accuracy to simulate the response of sunflower yield to soil
oisture and salinity.

.2. Relative importance of input factors in ANNs

In ANN-10 and ANN-6, the relative importance (RI) of soil mois-
ure and EC at different growth stages to sunflower yield is listed
n Table 7. For ANN-10, soil moisture content at squaring and soil
C at seedling had the highest RI among all input variables, which
ccounted for 18%. Secondly was the soil moisture content at the

owering and maturity stages had a RI of 15% and 10%, respectively,
nd soil EC at the squaring stage had a RI of 12%. The RI of soil
oisture content at sowing and seedling stages and of EC at sow-

ng, flowering and maturity stages was relatively lowest among all
nput variables. The results indicate that sunflower was more sen-
Fig. 3. Observed versus simulated yield from ANN-10 and ANN-6, and MLR-10 and
MLR-6.

sitive to soil moisture at the squaring stage and soil salinity at the
seedling stage, and with crop growth, its resistance increased and
the importance of soil moisture and EC to yield reduced.

For ANN-6, soil EC at crop sowing stage had a highest RI (32%),
indicating that the input variable is the most important for yield
formation (Table 7). Similar to ANN-10, the RI of soil moisture con-
tent at crop different growth stages to yield in ANN-6 was arranged
in a sequence of squaring, flowering, maturity, seedling and sow-
ing stage. This also proved that soil moisture content at sunflower
squaring stage is the most important for grain yield and the RI of
soil moisture to yield decreased at crop vegetative growth stages.

3.3. Simulation of sunflower yield using ANN-6

3.3.1. Yield change with soil salinity at crop sowing stage
One ANN-6 was used to simulate sunflower yield change with

soil salinity increase of sowing stage and soil moisture content was
respectively 100% or 40% of field capacity at every crop growth
stage (Fig. 4). The initial soil EC increased from 0.1 to 2 dS m−1

with 0.1 dS m−1 increments. The simulated results showed that
sunflower yield decreased with the initial soil EC increase regard-
less of soil moisture content. At 100% field capacity, the sunflower
yield decreased sharply from 12.0 to 7.0 t ha−1 when the initial EC
increased from 0.2 to 0.6 dS m−1. Afterward, the sunflower yield

−1
declined relatively slowly from 7.0 to 1.8 t ha when initial EC
increased from 0.6 to 2.0 dS m−1. The simulated yield at 100% field
capacity was mostly higher than the observed yield. At 40% field
capacity, sunflower yield decreased from 3.5 to 0.3 t ha−1 with the
soil salinity increase, all of which was lower than the observed yield.
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Table 6
Error comparison of the ANN and MLR models.

10 inputs 6 inputs

ANN-10 MLR-10 ANN-6 MLR-6

Mean Std Mean Std Mean Std Mean Std

RMSE (t ha−1) Max 3.2 0.18 4.9 0.26 3.6 0.34 6.6 0.37
Min 0.1 0.02 0.2 0.04 0.2 0.05 0.2 0.04
Average 1.1 0.11 1.8 0.19 1.6 0.22 2.4 0.21

RE (%) Max 32.4 5.24 120.5 19.30 38.9 6.31 331.2 45.20
Min 2.9 0.64 9.6 1.87 5.5 0.84 23.6 3.18
Average 12.0 1.18 23.4 6.23 17.3 2.46 55.5 9.77

R2 0.84 0.10 0.70 0.09 0.80 0.12 0.59 0.13

Table 7
Relative importance (RI, %) of the soil moisture and salinity factors to crop yield estimation.

Crop growth stage ANN-10 ANN-6

Soil moisture
content

Sowing 6 6
Seedling 7 10
Squaring 18 24
Flowering 15 16
Maturing 10 12

Soil electric

Sowing 4 32
Seedling 18 –
Squaring 12 –

– .

T
t
t

3
s

i
s
t
s
(
s
W
e
f

F
s

conductivity
Flowering
Maturing

, express no value because the corresponding factor is not input variable of ANN-6

he results showed that high salt concentrations severely affected
he growth of sunflower, but high soil moisture content mitigated
he crop yield decrease resulted from soil salinity stress.

.3.2. Yield change with soil moisture at crop different growth
tages

Sunflower yields were simulated with soil moisture content
ncrease respectively at crop seedling, squaring or flowering growth
tages using ANN-6, whereas at other growth stages, the soil mois-
ure content was 26%, which was equal to field capacity. Three soil
alinity levels of sowing stage (0.3, 0.6 and 1.0 dS m−1) were chosen

Fig. 5). The results showed that the sunflower yields increased with
oil moisture content increase for the different initial soil salinities.

hen soil moisture content at crop seedling, squaring and flow-
ring stages increased from 12% to 26%, sunflower yield improved
rom 7.5 to 9.9 t ha−1 for low saline soil, 2.2–6.8 t ha−1 for medium

ig. 4. Observed and ANN-6 simulated yield response to soil salinity of crop sowing
tage under 100% and 40% field capacity.
5 –
5 –

saline soil and 1.9–4.8 t ha−1 for high saline soil. The high initial
soil salinity inhibited crop yield formation, but the improvement
in soil moisture could decrease the reduction in the yield resulted
from high salinity.

For low (0.3 dS m−1) and medium (0.6 dS m−1) saline soils, the
sunflower yield was observed to be most sensitive to soil moisture
stress at the squaring stage, and the yield decreased by 24% and 68%
at soil moisture of 12% compared to those at soil moisture of 26%
for low and medium soil salinity, respectively. Secondly, sunflower
yield was sensitive to water stress at flowering stage and decreased
by 19% and 56% at soil moisture of 12% compared to at soil mois-
ture of 26% for the low and medium soil salinity, respectively. The
sunflower yield at the seedling stage was the most insensitive com-
pared to those at the other two growth stages, and the yield at the
condition of soil moisture of 12% reduced by 10% and 46% com-
pared to that at soil moisture of 26% for low and medium initial soil
salinity.

For high saline soil (1.0 dS m−1), the response of sunflower yield
to soil moisture stress was different from those in the low and
medium saline soils (Fig. 5). Sunflower yield was the most sen-
sitive to soil moisture stress at the seedling stage for high initial
saline soil. At crop seedling stage, sunflower yield decreased by 60%
at soil moisture of 12% compared to at soil moisture of 26%. Rela-
tively, the sunflower yield was insensitive to the soil water content
at the squaring and flowering stages, in which the yield reduced
by 42% and 30%, respectively. Overall, the effect of soil water and
salt stress on sunflower yield is complex and water management
needs to be adjusted according to the response of sunflower growth
to water stress in the different soil salinities.

4. Discussions
Many previous studies have already shown that the crop
response to soil environment is very complex, and should be mod-
eled as cubic or quadratic functions (Kijne, 2003; Jalota et al.,
2006; Starr et al., 2008). In our study, the ANN model produced



Journal Identification = FIELD Article Identification = 5427 Date: March 15, 2011 Time: 10:28 am

448 X. Dai et al. / Field Crops Resea

F
g

a
fl
w
t
i
u
p
r
g
s
a
n
g
c
t
t
s

complex. The soil moisture and salinity dynamics, as well as
ig. 5. ANN-6 simulated yield response to soil moisture content at crop different
rowth stages under low, medium and high saline soil conditions.

more precise and accurate result than MLR for modeling sun-
ower responses to soil moisture and salinity. Even for the ANN
ith 6 input variables, the results also were superior to those of

he MLR with 10 input variables. The result was similar to the find-
ngs of Kaul et al. (2005) and Miao et al. (2006). Kaul et al. (2005)
sed both soil productivity rates and climate variables for yield
rediction and found that ANN had shown to be better tools than
egression methods when analyzing corn and soybean yield data
enerated in field trials. Miao et al. (2006) employed ANN analy-
is to evaluate the relative importance of selected soil, landscape
nd seed hybrid factors on corn yield and grain quality in two Illi-
ois, USA fields, and the results indicated that the response curves
enerated by the ANN models were more informative than simple

orrelation coefficients or coefficients in multiple regression equa-
ion. The performance of ANN in the study was mainly attributed to
he ability of ANNs to capture the nonlinear input–output relation-
hip between crop growth and soil moisture and salinity, whereas
rch 121 (2011) 441–449

MLRs were unable to reflect these complicated relationships due to
their linear characteristics. Batchelor et al. (1997) showed that the
ANN had the advantage over other empirical modeling techniques
that do not assume a priory structure for the data, are well suited
for fitting non-linear relationships and complex interactions, and
can expose hidden relationships among input variables.

Moreover, ANN-10 in this study performed better than ANN-6,
but in practice ANN-6 is more convenient to use in saline soil due
to fewer input variables. Because it is impossible to exactly know
the soil salinity of crop different growth stages at planting, the soil
EC at crop sowing stage could easily be acquired, which was impor-
tant in tutoring water management in saline soils. According to the
different initial soil salinities, it is feasible to adjust soil moisture
content at crop different growth stages for acquiring high yield. Dai
et al. (2009) also modeled the reference evapotranspiration using
three or four climate factors and indicated that the error of ANN
model increased with the decrease in the number of input variable.
Considering the simplicity and practicality of model, the ANN-6 was
more perfect for simulating the sunflower response to soil moisture
and salinity.

Using connection weight method, the study results for ANN-10
and ANN-6 indicated that sunflower was the most sensitive to soil
moisture at the squaring and flowering stage. For low (0.3 dS m−1)
and medium (0.6 dS m−1) soil salinity at crop sowing stage, the
response of sunflower yields to water stress also were the most
sensitive at squaring stage and secondly was at flowering stage.
This is because sunflower was at its reproductive growth phase,
when water and salt stress significantly influence its achene dif-
ferentiation and filling. Flagella et al. (2004) and Di Caterina et al.
(2007) had showed that sunflower yield reduction was attributed
mainly to a decrease in achene per head and in the 1000 achene
weight. But the sensitivity of sunflower yield to soil moisture con-
tent varied for the different soil salinities. For high (1.0 dS m−1) soil
salinity at crop sowing stage, the yield response was the most obvi-
ous at seedling stage and the relative importance of soil EC for
ANN-10 also indicated that was the most important at seedling
stage, which mainly was owing to severe salt stress resulting in
poor emergence and vegetation growth (Chen et al., 2009). High soil
moisture could compensate some yield reduction resulting from
salt stress. The modeling also proved that increasing the amount of
irrigation resulted in sunflower yield improvement reaching 86.9%
under high soil salinity level (Gaballah et al., 2006). In the study, the
simulated yield at 100% field capacity was higher than that at 40%
field capacity, and mostly higher than the observed yield. The soil
moisture content at the initial planting and the four growth stages
was at the field capacity of �f = 26%, which means that the soil mois-
ture conditions were optimized and there was no water stress to
the sunflower. However, several data from the observed yield were
higher than the simulated yield mainly due to ANN had higher error
for marginal data from training sample. The simulated yield at 40%
field capacity was lower than the observed yield owing to the crop
yield was simulated at the condition of water stress at sunflower
every growth stage. In fact, when the crop was influenced by the
dry soil condition, irrigation schemes were generally conducted by
local farmers. Accurate knowledge of the relative importance of
the input parameters in ANN models to producing output would
be useful in guiding irrigation practices in saline soils.

However, in this study, only the relationship between sun-
flower yield and the average soil water content and EC of soil
profile at different growth stages was investigated. However, the
crop growth response to soil moisture and salinity are more
their distribution at soil profile would change with crop growth
and irrigation management. In future, ANN technology ought
to be used to model the relationship between crop growth
and soil water and salinity of soil profile, which was impor-
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ant for more accurately understanding and describing the yield
esponse, and further better guiding water management in saline
onditions.

. Conclusions

Two ANN models, with 6 inputs (ANN-6) and with 10 inputs
ANN-10), were developed to simulate the response of sunflower
ield to soil water content and salinity in saline soil. Compared
ith MLRs, both ANN models have higher precision with RMSEs

f 1.1 and 1.6 t ha−1, REs of 12.0% and 17.3%, and R2 of 0.84 and
.80, for ANN-10 and ANN-6, respectively, indicating that both ANN
odels can accurately describe the complex relationship between

unflower yield and soil moisture and salinity at crop different
rowth stages. The response of sunflower yield to soil water and
alt stress can be understood through the simulation results of the
NN models. For low and medium saline soils, sunflower yield was
ore sensitive at crop squaring stage, but for high saline soil at

eedling stage. High soil moisture content could compensate the
ield decrease resulting from salt stress regardless of salt levels at
rop sowing stage. However, the squaring stage the most sensitive
as, and the flowering stage secondly. The response of sunflower

ield to soil moisture at different stages in saline soils can be under-
tood through the simulated results of ANN-6. Therefore, an ANN
odel is a useful tool in investigating and understanding the com-

lex relationships between crop yields and soil water and salinity.
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