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Effects of Tillage and Residue Management on Soil Organic 
Carbon and Total Nitrogen in the North China Plain

Soil & Water Management & Conservation

As the largest terrestrial organic C pool, soil contains about 1550 Pg C 
to 1-m depth, which is twice the amount of C in the atmosphere (Lal, 
2008a). Cropland soil has a huge potential as a C sink (0.4–0.8 Pg yr–1), 

which could decrease CO2 concentrations in the air and mitigate global emissions 
(Lal, 2004). As SOC is crucial to soil physical, chemical, and biological properties 
(Gregorich et al., 1994), more SOC sequestration in soil could help in sustain-
ing soil fertility and agronomic productivity. Generally, no-tillage management 
has the potential to increase SOC pool by capturing C inputs and decreasing C 
loss by tillage. According to a review based on 276 paired treatments from 67 
long-term experiments, West and Post (2002) concluded that soil could sequester 
57 ± 14 g C m–2 yr–1 after conversion from conventional tillage to no-tillage man-
agement if crop residue is left on the surface. While long-term (>10 yr) adoption of 
conservation tillage could potentially decrease global warming in humid climates, 
there exists a high degree of uncertainty on the effects of conservation tillage in 
drier areas (Six et al., 2002), such as the NCP.

Soil type (Blanco-Canqui and Lal, 2008; Christopher et al., 2009) and 
sampling depth (Gál et al., 2007; Machado et al., 2003; VandenBygaart et al., 
2011) could affect the assessment of tillage management on SOC pools. Some 
researchers have expressed doubt that no-tillage can sequester more SOC than 
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A suitable tillage-residue management system is needed in the North China Plain (NCP) that 
sustains soil fertility and agronomic productivity. The objectives of this study were to determine 
the effects of different tillage-residue managements for a winter wheat (Triticum aestivum L.) 
and summer maize (Zea mays L.) double-crop system on soil organic carbon (SOC) and total N 
pools. No-tillage with residue cover (NTR), no-tillage with residue removed and manure applied 
(NTRRM), and conventional tillage with residue removed (CTRR) were investigated for 6 yr, based 
on a uniform N application among treatments. Soil samples were collected at six depths and 
changes in SOC and total N pools were analyzed. Treatments of NTRRM and NTR sequestered 
more SOC and total N in the 0- to 5-cm depth than CTRR. In the subsoil (5–60 cm), annual SOC 
sequestration was 0.01 and -0.40 Mg ha–1 yr–1 for NTRRM and NTR, respectively, while CTRR 
exhibited a significantly positive SOC pool trend. In the whole soil profile (0–60 cm), NTRRM, 
NTR, and CTRR sequestered SOC at the rates of 0.66, 0.27 and 2.24 Mg ha–1 yr–1. When manure 
was applied to substitute for the N lost from residue removal, the NTRRM tended to accumulate 
more SOC than NTR, and had similar accumulation as NTR in total N pools, grain yield, and 
aboveground biomass. Crop residue could be substituted by manure in this double-crop, irrigated 
system. Conventional tillage, with residue removed, was suitable in soil fertility and agronomic 
productivity relative to NTRRM and NTR in the NCP.

Abbreviations: BD, bulk density; CTRR, conventional tillage with residue removed; NCP, 
North China Plain; NTR, no-tillage with residue cover; NTRRM, no-tillage with residue 
removed and manure applied; SOC, soil organic carbon.
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conventional tillage over the entire soil profile. Baker et al. (2007) 
highlighted the fact that ignoring the subsoil could create bias in 
sampling, thereby exaggerating the positive effect of no-tillage 
management on SOC pool over conventional tillage. Recently, 
a review of such studies (Luo et al., 2010) analyzed 69 paired-
experiments and concluded that no-tillage did not improve the 
SOC pool more than conventional tillage down to 40-cm depth. 
They found that the SOC pool increased in the 0- to 10-cm 
depth by 3.15 ± 2.42 t ha–1, but declined in the 20- to 40-cm 
depth by 3.30 ± 1.61 t ha–1 after adoption of no-tillage. Du et 
al. (2010) studied SOC and total N responses to conventional 
tillage with and without residue, as compared to rotary tillage 
and no-tillage for a wheat–corn double crop system in the NCP. 
They found that the no-tillage system had higher SOC and total 
N concentrations in the upper 10 cm but lower concentrations 
in the 10- to 20-cm depth that offset each other such that total 
SOC pool in the 0- to 30-cm profile were not different except for 
the conventional tillage without residue treatment. Syswerda et 
al. (2011) compared conventional tillage to no-tillage in a corn–
soybean–wheat rotation in the northern U.S. Corn Belt. They 
found that surface SOC concentrations and total C pool under 
no-tillage were significantly greater than conventional tillage 
and the gains in C sequestration were not offset by C changes 
with depth. VandenBygaart et al. (2011) found that despite the 
concerns with only sampling the surface, deep sampling did 
not improve the ability to determine differences due to land 
management in SOC pools.

Furthermore, time is important on the influence of tillage 
on SOC (Christopher et al., 2009). After no-tillage management 
adoption or conversion back to conventional tillage, soil needs 
time to establish a new equilibrium between C inputs and 
outputs. The time could be 6 to 8 yr for the SOC pool in the 0- 
to 30-cm depth of tropical soils (Six et al., 2002).

Addition of crop residue plays an important role in SOC 
sequestration in improving soil structure, soil water-holding 
capability, and soil erosion prevention (Lal, 2009). Crop residue 
is important to soil nutrient cycling and soil fertility. Crop residue 
removal will cause the depletion of soil nutrition (such as N, P, K) 
which could decrease agronomic productivity and increase soil 
degradation (Blanco-Canqui et al., 2009; Tarkalson et al., 2009). 
Lal (2009) estimated that residue contained 18 to 62 kg Mg–1 
of agronomically important nutrients, depending on the type 
of residue produced and its nutrient content, which would be 
equivalent to 83% global fertilizer consumption in 2001.

However, the effect of surface residue on SOC 
sequestration was limited in no-tillage. Gale and Combadellar 
(2000) distinguished the beneficial effects of no-tillage on SOC 
sequestration from residue- and root-derived C by a stimulated 
experiment. They found only 16% 14C in the surface residue was 
in the soil after 360 d; in contrast, 42% of root-derived 14C was 
still in the soil. Kochsiek et al. (2009) found that irrigation could 
increase the rate of litter-C decomposition which indicated that 
residue-derived C would be encouraging in respiring as CO2 in 
irrigation no-tillage field.

Recently, with the increasing demand of biofuel around the 
world, concern has been expressed over the use of crop residues 
for biofuel production (Lal, 2008b; Tilman et al., 2009). So there 
is much debate about the reasonable utilization of crop residues.

Application of manure could increase SOC, and the nutrient 
input could improve soil fertility and soil structure ( Jarecki et al., 
2005; Mikha and Rice, 2004; Rochette and Gregorich, 1998). 
Jiao et al. (2004, 2006) found that aggregate stability (>2 mm) 
and nutrient retention were improved when manure and mineral 
fertilizer were applied in combination at a rate of 30 Mg ha–1, 
as compared to mineral fertilization alone. Thelen et al. (2010) 
concluded that manure and compost help NT systems decrease 
the net global warming potential of CO2 emissions relative to 
nonmanure systems; therefore, manure could play a similar role 
as crop residue by improving soil C and nutrient pools. The use 
of manure as a substitute for crop residue removal under NT 
has the potential to optimize the use of residue and manure and 
sustain agricultural development.

The NCP is one of the most important agricultural regions 
for supplying food (Du et al., 2010) and the production of 
crop residue (Liu et al., 2008). Crop residue in this region is 
essentially completely removed from the surface and used for 
multiple purposes, including heating and animal feed. The 
remaining stubble is incorporated annually by conventional 
tillage. A sustainable agricultural system in this region would 
provide security for China’s food and biofuel production. It 
is, therefore, necessary to evaluate the effects of no-tillage and 
residue management on the SOC and total N pools in the NCP.

The objectives of this study were (i) to determine the effects of 
no-tillage compared to conventional tillage with and without residue 
on the SOC and total N pools of the soil profile (0–60 cm); (ii) to 
know whether crop residue could be substituted by manure in 
no-tillage when applied at an equivalent N rate; and (iii) to 
develop a sustainable tillage-residue management system based 
on their effects on SOC and total N pools, and grain yields in 
the NCP. To evaluate these effects on SOC and total N pools, 
long-term experiments are needed. Since 2003, the Agriculture 
Research Service of U.S. Department of Agriculture (USDA-
ARS) and the Institute of Geographic Sciences and Natural 
Resources Research (IGSNRR) of Chinese Academy of Sciences 
have been conducting a bilateral project on conservation tillage 
in the NCP.

MATERIALS AND METHODS
Site Description

This study was conducted at Yucheng Comprehensive 
Experiment Station of China Academy of Science (36°50′ 
N,116°34′ E,elevation is 20 m), which is along the lower reach 
of the Yellow River in the NCP. It is located in a semiarid 
climate, with annual mean temperature of 13.4°C and mean 
precipitation of 567 mm during the past 25 yr (from 1985–
2009). Approximately 70% of annual precipitation occurs 
between June and September. The soil is classified as a Calcaric 
fluvisols according to the FAO-Uneson system, surface soil 
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texture is silt loam (sand, 12%; silt, 66%; clay, 22%), according to 
the USDA classification system, with a pH of 8.6. Winter wheat 
and summer maize double cropping is predominant in the NCP. 
Depending on precipitation, winter wheat is irrigated, using 
local groundwater, two to three times each season (70–80 mm 
each time), while summer maize is irrigated only in dry summers.

Experimental Design and Management
The long-term conservation tillage experiments had three 

treatments, based on the same N rate: NTR, NTRRM, and 
CTRR. There were three replications for each treatment which 
were arranged randomly. The plot size was 300 m2 (7.5 m width 
× 40 m length). Winter wheat was seeded between 10 and 15 
October, and harvested during the first 10 d of June. Then summer 
maize was seeded 5 d later. After harvest, standing stubble of each 
treatment was cut to the same height, 15 to 20 cm for wheat and 10 
cm for maize, and all other residues were removed for the residue 
removal treatments (NTRRM and CTRR).

Before the establishment of tillage treatments, the study 
field was conventionally tilled for 5 yr (from 1998–2003) with 
winter wheat and summer maize double-cropped. All plots were 
tilled deeper than 30-cm depth to remove possible plow pans. 
For the CTRR treatment, a rotary tiller was used with a tillage 
depth of about 10 to 15 cm which fully incorporated standing 
stubble into the soil after maize harvest. There was no tillage 
before maize seeding which is historically common in the NCP. 
After harvest of NTR treatment, crop residues were chopped 
into pieces (about 5 cm length) by hand, plots were covered 
by residue at fixed rates of 4 Mg ha–1 yr–1 (wheat straw) and 
6 Mg ha–1 yr–1 (maize stover). For NTRRM treatment, dry cattle 
(Bos taurus) manure at a rate of 4 Mg ha–1 yr–1 was applied on the 
surface before winter wheat seeding.

The three treatments had the same total N application rate 
(Table 1), 492 kg N ha–1 yr–1, but part of the N application 
was from different sources. The N application rate as mineral 
fertilizer under NTR, NTRRM, and CTRR systems was 
412 kg N ha–1 yr–1. But an additional 80 kg N ha–1 yr–1 was 
applied as mineral fertilizer for CTRR, as dry manure for 
NTRRM and as residue for the NTR treatments. Details of 
dry cattle manure and crop residue composition are 
shown in Table 2. All other management procedures 
were identical for the three treatments, with herbicide 
(2,4-Dichlorophenoxyacetic acid butylate) and 
insecticide (40% dimethoate, O,O-dimethyl S-[2-
(methylamino)-2-oxoethyl] dithiophosphate) spraying 
in May, and N, P, and K applied as compound fertilizer 
which is an inorganic chemical fertilizer and contains 

N (as urea), P (as P2O5) and K (as K2O) at rate of 12: 19: 13, 
and the application rates were 116 kg N ha–1, 178 kg P ha–1 and 
122 kg K ha–1, respectively.

Soil Sampling and Analysis
Soil samples were collected in 0- to 2.5, 2.5- to 5, 5- to 10, 

10- to 20, 20- to 40 and 40- to 60-cm depth increments after the 
harvest of wheat and maize each year. Soil samples were collected 
at five randomly chosen places in each plot by hand augur (4.6 
cm diam.), then mixed together to make a composite sample 
for each soil depth. Samples were air-dried and passed through 
a 2-mm sieve for chemical analysis. Soil cores were collected in 
triplicate from these same six soil depths using stainless steel 
rings (50 cm3) for bulk density determination.

Soil pH was measured in 1:5 soil/water suspension. Soil 
organic carbon was determined by oxidation method with 
K2Cr2O7–H2SO4 (Lu, 1999). In brief, approximately 0.5 g soil 
sieved through a 0.25-mm sieve, with roots and stone carefully 
removed by hand, was digested with 5 mL of 1M K2Cr2O7 and 
10 mL of concentrated H2SO4 at 150°C for 30 min, followed 
by titration of digests with FeSO4. Soil total N was quantified 
using a Kjeldahl digestion procedure with NH4–N analyzed 
colorimetrically (Gallaher et al., 1976). In this study, we used the 
data from June and October in 2004 (after wheat and maize 
harvest, respectively), October 2005, June 2006, October 2007, 
June 2009 and October 2009. To avoid the effects of differing 
soil bulk density among treatments, a common equivalent soil 
mass (Ellert and Bettany, 1995) was used for calculating SOC and 
total N pools at each depth.

Statistical Analyses
The effects of 6 yr of tillage-residue managements on 

SOC, total N, soil bulk density, soil C/N ratio, crop yield 
and aboveground biomass were determined by ANOVA. 
Significance was determined by LSD at the 0.05 level using SPSS 
for Windows, version 11.5 (SPSS Inc., Champaign, IL). The 
change in soil properties with time was determined by Sigmaplot 
10.0 software (Systat Inc., Chicago, IL).

Table 1. Nutrient management under different treatments for winter wheat and summer maize growing seasons.

Treatments† Winter wheat Summer maize

NTRRM
112.5 Kg N ha–1 of mineral fertilizer and 124.5 Kg N ha–1 of urea + 4 Mg ha–1 of 

dry matter cattle manure
175 Kg N ha–1 of urea

NTR 112.5 Kg N ha–1 of mineral fertilizer and 124.5 Kg N ha–1 of urea + 6 Mg ha–1 of straw 175 Kg N ha–1 of urea + 4 Mg ha–1 of straw
CTRR 112.5 Kg N ha–1 of mineral fertilizer and 172.5 Kg N ha–1 of urea 207 Kg N ha–1 of urea

† NTRRM, no-tillage with residue removed and manure added; NTR, no-tillage with residue; CTRR, conventional tillage with residue removed.

Table 2. Composition of manure and crop residue.

Element Dry cattle manure Winter wheat residue Summer maize residue

––––––––––––––– g kg–1 ––––––––––––––––
C nd† 421.13 375.40

N 19.61 6.80 9.03

P 10.52 0.32 0.67
K 16.74 13.21 26.17

† nd stands for no data. Data was measured in 2003.
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RESULTS
Soil Bulk Density

The impacts of treatments on soil bulk density (BD) at six 
depths during 2004 to 2009 are shown in Fig. 1. Soil BD under 
three treatments tended to fluctuate in the upper two depths. 
Limited differences in BD were observed at 5- to 10-cm depth 
where the soil was denser in NTRRM and NTR treatments 
than in CTRR from October 2007 to October 2009. Based 
on a similar range of fluctuations among treatments in each soil 
depth, 95% confidence was used to describe the fluctuations of 
the means of soil BD over the 6 yr. The results showed that the 
fluctuation ranges tended to decrease with depth. In 0- to 2.5-cm 
depth, fluctuation range was 0.23 g cm–3 (95% confidential 
interval is 1.23–1.46) and decreased to 0.08 g cm–3 in 40- 
to 60-cm depth (95% confidential interval is 1.37–1.45). In the 
upper soil depths (0–20 cm), the range was about 0.2 g cm–3. In 

the deeper soil depths, however, it was 0.1 g cm–3 for 20- to 40-
cm or even less at 40- to 60-cm depth.

Soil Organic Carbon and Nitrogen Concentration
Regression analysis indicated that the influence of the 

particular tillage method employed on SOC was related to 
sampling depth (Fig. 2). The SOC increased rapidly with 
time in the upper depths (0–2.5, 2.5–5, and 5–10 cm), and 
had the fastest increase with NTRRM and NTR (1.13 and 
1.29 g kg–1 yr–1, respectively) at the surface (0–2.5 cm). The 
SOC also increased with time in the upper depths of CTRR but 
not as rapidly as for the NTTRM and NTR treatments. As a 
result, the no-tillage treatments had significantly greater SOC 
concentrations than CTRR after October 2007 in the 0- to 2.5-cm 
depth. The rate of growth decreased with depth for both NTRRM 
(0.69 and 0.19 g kg–1 yr–1 for 2.5–5 cm and 5–10 cm, respectively) 
and NTR (0.58 and 0.14 g kg–1 yr–1 for 2.5–5 cm and 5–10 cm, 

Fig. 1. Soil bulk density from 2004 to 2009 for no-tillage with residue removed and manure applied (NTRRM), no-tillage with residue cover 
(NTR), and conventional tillage with residue removed (CTRR) treatments in six depths. Error bars stand for LSD (P < 0.05) for comparison among 
tillage treatments at the same soil layer. Soil bulk density fluctuation ranges shown by the upper and lower horizontal lines which represent 95% 
confidential interval.
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respectively). As a result, differences among NTRRM, NTR, and 
CTRR were not significant for these depths.

The deeper depths (10–20, 20–40, and 40–60 cm) 
exhibited stable or negative trends for the NTRRM and NTR 
treatments. The only exception occurred at 20- to 40-cm depth, 
where a slightly positive growth (0.03 g kg–1 yr–1) was detected 
for NTRRM. In contrast, CTRR exhibited positive growth of 
SOC for all depth intervals down to 60 cm. The CTRR had 
similar growth rate of SOC concentration in 0- to 2.5 and 2.5- to 
5-cm soil depths (0.44 and 0.45 g kg–1 yr–1), but the growth rate 
exhibited a significant correlation decline with depth down to 
0.15 g kg–1 yr–1 for the 40- to 60-cm depth. As a result, CTRR 
treatments tended to become greater in SOC concentration than 
the NTRRM and NTR treatments, but differences were only 

significant at the 40- to 60-cm depth at the last sampling 
(October 2009). 

Similar to the influences of tillage-residue management 
treatments on SOC concentrations, N concentrations increased 
with time, and differences among treatments were mostly in the 
upper (0–2.5 and 2.5–5 cm) depths (Fig. 3). The growth rate of N 
concentration was positive in the upper depths but decreased with 
depth from 0.16, 0.08, 0.04 to 0.01 for NTRRM and 0.11, 0.09, 
0.04, 0.02 for NTR for 0- to 2.5, 2.5- to 5, 5- to 10, and 10- to 20-cm 
depths, respectively. At 0- to 2.5-cm depth, soil N concentration in 
the NTRRM and NTR fields were both significantly higher than 
CTRR from October 2007 to October 2009, and N concentration 
in NTRRM was greater than NTR at 0 to 2.5 cm on October 2009. 
The three treatments had similar trends during 2004 to 2009 at all soil 

Fig. 2. Change of soil organic carbon (SOC) concentration at six depths with time in three treatments from 2004 to 2009. Solid circles stand for 
no-tillage with residue removed and manure applied (NTRRM) treatment, hollow circles stand for no-tillage with residue cover (NTR), and solid 
triangles stand for conventional tillage with residue removed (CTRR) treatment. Solid, long dash and dash-dot lines represent linear regression 
lines for NTRRM, NTR, and CTRR treatments, respectively. Error bars represent LSD (P < 0.05) for comparison among three treatments at same 
soil layer. The lowercase “a” stands for the linear regression slope which is the annual change of SOC concentration.
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depths. Positive trends of N concentration were observed at the 0- to 
2.5, 2.5- to 5 and 5- to 10-cm depths; however, there was essentially 
no change in soil N among the treatments or over time at sampling 
depths below 10 cm.

Soil Organic Carbon and Total Nitrogen Pools
To calculate the SOC and total N pools at each depth 

interval, a common equivalent mass for all years, depths, and 
treatments was used to estimate the change in SOC and N 
mass with time among treatments (Table 3). As observed for 
the concentration, the SOC pool significantly increased with 

time for NTRRM and NTR treatments in the upper two depths 
(0–5 cm) and for all depths (0–60 cm) for the CTRR treatment. 
Below 10 cm, the NTRRM and NTR treatments exhibited 
a decrease in SOC pool, but the changes with time were not 
significant. As a result, NTRRM and NTR both had significantly 
greater SOC pools than CTRR in the soil surface (0–2.5 cm) by 
the end of the study and NTRRM had significantly higher SOC 
pool than CTRR in the 2.5- to 5-cm depth. However, SOC 
pools in CTRR (14.01 and 10.33 Mg ha–1) were significantly 
higher than NTR (11.63 and 7.53 Mg ha–1) in 20- to 40 and 40- 
to 60-cm depths and higher than NTTRM (8.65 Mg ha–1) at 

Fig. 3. Change of total N concentration at six depths with year in three treatments from 2004 to 2009. Solid circles stand for no-tillage with residue 
removed and manure applied (NTRRM) treatment, hollow circles stand for no-tillage with residue cover (NTR), and solid triangles stand for 
conventional tillage with residue removed (CTRR) treatment. Solid, long dash and dash-dot lines represent linear regression lines for NTRRM, NTR, 
and CTRR treatments, respectively. Error bars represent LSD (P < 0.05) for comparison among three treatments at same soil layer. The lowercase 

“a” stands for the linear regression slope which is the annual change of SOC concentration.
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the deepest depth (40–60 cm) by October 2009. No differences 
were observed between NTRRM and NTR in SOC pool.

The three treatments had the same application rates of total 
N, but with different sources, and thus N availability to plants 
and mineralization potential could differ between treatments. 
Similar to what was observed with SOC pools, the total N pool 
exhibited a significant increase with time for all three treatments 
in the upper two depths (0–5 cm). However, changes with 
time, while generally positive, were not significant for all three 
treatments in the deeper depths. As a result, total N accumulated 
in the two upper depths was significantly greater for NTRRM 
and NTR treatments than CTRR. However, in the subsoil 
(below 5 cm), there were no significant differences in total N 
pool among treatments.

The SOC and N pools were combined for the two surface 
depths and compared to the remaining (5–60 cm) and total 
soil profile (0–60 cm) (Table 4). It is clear that no-tillage, 
with or without residue, is only impacting the surface depths 
while conventional tillage is also impacting the deeper depths. 
Treatments of NTRRM and NTR were both significantly higher 
in SOC and total N pools than CTRR at the surface (0–5 cm), 
but CTRR pools were higher below the surface (5–60 cm), 
for example, SOC. For the whole soil profile (0–60 cm), CTR 
had higher annual SOC pool change rate (2.24 Mg ha–1) 
than NTR (0.27 Mg ha–1), and resulted in greater SOC pool 
(46.89 Mg ha–1) than NTR (42.54 Mg ha–1) in October 2009.

Table 3. Soil organic carbon (SOC) and total N pools in October 2009 and the rate of change from 2004 to 2009.

Depth NTRRM† NTR CTRR NTRRM NTR CTRR

cm SOC pool in October 2009, Mg ha–1 yr–1 SOC change rate from 2004 to 2009‡, Mg ha–1 yr–1

0–2.5 5.00(0.53)a§¶ 4.96(0.35)a 3.47(0.55)b 0.40(r2 = 0.92,P < 0.001) 0.46(r2 = 0.94,P < 0.001) 0.16(r2 = 0.65,P = 0.03)

2.5–5 3.82(0.09)a 3.49(0.25)ab 3.07(0.41)b 0.25(r2 = 0.88,P = 0.001) 0.21(r2 = 0.81,P = 0.006) 0.16(r2 = 0.80,P = 0.007)

5–10 5.83(0.44)a 5.74(0.89)a 6.08(0.80)a 0.14(r2 = 0.61,P = 0.03) 0.10(r2 = 0.30,P = 0.20) 0.30(r2 = 0.79,P = 0.007)

10–20 8.62(0.71)a 9.19(0.81)a 9.93(1.57)a -0.10(r2 = 0.20,P = 0.31) -0.16(r2 = 0.39,P = 0.13) 0.45(r2 = 0.78,P = 0.008)

20–40 12.71(1.01)ab 11.63(0.19)b 14.01(0.98)a 0.10(r2 = 0.08,P = 0.53) -0.37(r2 = 0.32,P = 0.18) 0.75(r2 = 0.75,P = 0.01)

40–60 8.65(0.88)b 7.53(0.56)b 10.33(0.38)a -0.13(r2 = 0.21,P = 0.30) 0.04(r2 = 0.02,P = 0.79) 0.43(r2 = 0.70,P = 0.02)

Total N pool in October 2009, Mg ha–1 yr–1 Total N change rate from 2004 to 2009, Mg ha–1 yr–1

0–2.5 0.54(0.04)a 0.46(0.02)b 0.37(0.02)c 0.06(r2 = 0.96,P < 0.001) 0.04(r2 = 0.90,P = 0.003) 0.02(r2 = 0.92,P = 0.02)

2.5–5 0.40(0.03)a 0.39(0.01)a 0.33(0.01)b 0.03(r2 = 0.80,P = 0.02) 0.03(r2 = 0.77,P = 0.02) 0.02(r2 = 0.77,P = 0.02)

5–10 0.65(0.04)a 0.66(0.02)a 0.67(0.06)a 0.03(r2 = 0.45,P = 0.14) 0.03(r2 = 0.03,P = 0.05) 0.03(r2 = 0.03,P = 0.05)

10–20 1.04(0.09)a 1.14(0.03)a 1.06(0.06)a 0.01(r2 = 0.07,P = 0.61) 0.03(r2 = 0.41,P = 0.17) 0.04(r2 = 0.41,P = 0.17)

20–40 1.42(0.08)a 1.57(0.17)a 1.72(0.23)a 0.00(r2 = 0.00,P = 0.87) 0.03(r2 = 0.15,P = 0.45) 0.04(r2 = 0.13,P = 0.47)

40–60 1.12(0.16)a 1.07(0.00)a 1.11(0.08)a 0.00(r2 = 0.00,P = 0.93) 0.01(r2 = 0.02,P = 0.80) -0.01(r2 = 0.02,P = 0.80)

† NTRRM, no-tillage with residue removed and manure added; NTR, no-tillage with residue; CTRR, conventional tillage with residue removed.
‡ n = 7 for SOC and n = 6 for total N.
§ Values are means with the standard deviation in parenthesis (n = 3).
¶ Different letters in a row designate significant differences (P < 0.05) among same soil depth. 

Table 4. Soil organic carbon (SOC) and total N pools in October 2009 and mean rate of change for SOC and total N pools under 
three treatments in 0- to 5, 5- to 60 and 0- to 60-cm soil depths.

Depth Treatments† SOC pool in October 2009
Mean change of SOC from 2004 

to 2009‡
Total N pool in 
October 2009

Mean change of total N from 
2004 to 2009

Mg ha–1 Mg ha–1 yr–1 Mg ha–1 Mg ha–1 yr–1

0–5 NTRRM 8.82(0.60)a§¶ 0.65(r2 = 0.95,P < 0.001) 0.94(0.04)a 0.08(r2 = 0.93,P = 0.002)

NTR 8.45(0.43)a 0.66(r2 = 0.91,P < 0.001) 0.84(0.02)b 0.08(r2 = 0.82,P = 0.01)

CTRR 6.54(0.96)b 0.32(r2 = 0.80,P = 0.006) 0.70(0.05)c 0.04(r2 = 0.78,P = 0.02)

5–60 NTRRM 35.80(0.44)b 0.01(r2 = 0.00,P = 0.97) 4.23(0.26)a 0.05(r2 = 0.06,P = 0.63)

NTR 34.09(1.46)b -0.40(r2 = 0.29,P = 0.22) # 4.45(0.19)a 0.10(r2 = 0.24,P = 0.33)

CTRR 40.35(1.18)a 1.92(r2 = 0.87,P = 0.002) 4.57(0.25)a 0.10(r2 = 0.10,P = 0.54)

0–60 NTRRM 44.63(0.27)ab 0.66(r2 = 0.56,P = 0.05) 5.17(0.23)a 0.14(r2 = 0.20,P = 0.36)

NTR 42.54(1.45)b 0.27(r2 = 0.12,P = 0.44) 5.29(0.21)a 0.18(r2 = 0.43,P = 0.16)
CTRR 46.89(2.61)a 2.24(r2 = 0.88,P = 0.002) 5.27(0.25)a 0.14(r2 = 0.30,P = 0.25)

† NTRRM, no-tillage with residue removed and manure added; NTR, no-tillage with residue; CTRR, conventional tillage with residue removed.
‡ Annual growth rate by regression line (n = 7 for SOC and n = 6 for total N). 
§ Values are means with the standard deviation in parenthesis (n = 3). 
¶ Different letters in a column designate significant differences (P < 0.05) among treatments for the same soil depth.
# Negative values indicate soil depletion.
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Soil Carbon/Nitrogen Ratio 
The C/N ratio tended to decrease with time for NTRRM 

and NTR at all depths, however, the changes with time were not 
significant for the 6 yr study (Table 5). The changes in C/N ratios 
with time for CTRR tended to be negligible for most depths 
and were also not significant for all depths. It is conceivable 
that differences in C/N ratio among treatments may become 
significant if the study were performed longer. By October 2009, 
there were a couple of significant differences observed at deeper 
depths. The CTRR treatment had significantly higher C/N ratio 
than NTR in 10 to 20 cm and higher than NTRRM and NTR 
in 40- to 60-cm depth. In the entire 0- to 60-cm soil profile, 
CTRR (8.91) tended to be greater than NTRRM (8.64) and 
NTR (8.06) but differences were not significant at this point.

DISCUSSION
Effects of Tillage Managements on Soil Bulk Density

Soil BD can be affected by tillage managements and is a 
vital parameter used to estimate SOC and total N pools. Unger 
and Jones (1998) found similar results after 12 yr of tillage 
treatments. Their main differences in soil BD were for 4- to 
10-cm soil depth which was greater with no-tillage than with 
stubble mulch tillage among all soil depths down to 65 cm. For 
the current study, tillage loosened the upper soil (tillage depth 
was 10–15 cm) under CTRR treatment whereas NTRRM 
and NTR were denser due to lack of disturbance. The surface 
was compacted by machinery during seeding twice a year which 
could reconsolidate the surface soil depths (0–2.5 and 2.5–5 cm) 
in CTRR and prevent differences among treatments from being 
significant. Another potential reason for the limited differences 
among treatments was sampling time with respect to tillage 
timing. The soil was sampled in June and October, whereas 
tillage for CTRR treatment occurred after sampling in October, 
so there were 8 and 12 mo, respectively, of reconsolidation before 
sampling. Franzluebbers et al. (2007) showed that the decrease 
in bulk density of the soil surface by paraplowing was inversely 
related to the time lag between plowing and sampling, and that 
reductions lasted less than a year. As a result, the influence of 
tillage on soil BD in this study was insignificant.

Dam et al. (2005) observed a larger fluctuation range of BD 
at the upper 10 cm than 10- to 20- cm soil depths during an 11-yr 
tillage study. The fluctuation in soil BD with time, as expressed 
by the 95% confidence interval in Fig. 1, was twice as high at the 
surface as the 20- to 40 and 40- to 60-cm depths. This indicates 
that the influence of tillage-residue management system on soil 
BD was limited to the upper 20 cm depth in this study, which 
corroborates the study by Dam et al. (2005).

Effects of Tillage-Residue Management on Soil 
Organic Carbon and Total Nitrogen Pools

Change in SOC pool is a process of soil establishing a new 
balance between inputs and outputs under different treatments 
(Lal et al., 1998). Generally, no-tillage with residue left in place 
has the potential for sequestering more SOC than conventional 
tillage in the upper soil depths for two reasons: (i) tillage destroys 
the protection provided by crop residue on the surface; and (ii) 
increases the oxidization of SOM which could be avoided by 
no-tillage treatment (Elliott, 1986). Although CTRR got less 
C input than NTRRM (from cattle manure) and NTR (from 
crop residue) in this study, it accumulated significantly greater 
SOC (2.24 Mg ha–1 yr–1) than the other two treatments (0.66 
and 0.27 Mg ha–1 yr–1, respectively) overall in the 0- to 60-cm 
soil profile. Christopher et al. (2009) reported similar results 
in a regional study to estimate the change of SOC pool after 
converting from CT to NT treatment. They found three groups 
under NT treatment contained significantly less SOC than CT 
in the 0- to 60-cm soil profile, and considered that time was a 
limitation for SOC sequestration under NT treatment. Six et al. 
(2002) also observed that sequestration of SOC after conversion 
from CT to NT was zero or negative in short-term studies, but 
accumulation of SOC under NT treatment was positive after 
6 to 8 yr at the 0- to 30-cm soil depth. However, Follett et al. 
(2005) observed that no-tillage could sequester greater SOC 
than CT after a short-term (5 yr) treatment in Central Mexico. They 
also found that the deeper depth (15–30 cm) accumulates SOC faster 
than the upper soil depth (0–15 cm). Therefore, the 6 yr for this study 
may be enough to establish a new balance in SOC or total N pools.

No-tillage accumulated more SOC than CT only in the 
surface soil, but a reverse situation was observed below the tillage 

Table 5. Soil organic carbon to total N (C/N) ratio in October 2009 and the mean rate of change (n = 6) under three treatments 
during 2004 to 2009.

Depth 
NTRRM† NTR CTRR NTRRM NTR CTRR

C/N ratio in October 2009 Mean change rate of C/N ratio from 2004 to 2009

cm
0–2.5 9.26(0.46)a‡§ 10.90(0.78)a 9.45(1.42)a -0.23(r2 = 0.17,P = 0.42) 0.26(r2 = 0.36,P = 0.20) 0.02(r2 = 0.02,P = 0.79)

2.5–5 9.60(0.56)a 8.96(0.53)a 9.17(0.87)a -0.09(r2 = 0.03,P = 0.76) -0.27(r2 = 0.36,P = 0.21) -0.02(r2 = 0.01,P = 0.85)

5–10 8.97(0.16)a 8.65(1.29)a 8.99(0.55)a -0.17(r2 = 0.33,P = 0.22) -0.21(r2 = 0.43,P = 0.16) -0.09(r2 = 0.07,P = 0.60)

10–20 8.28(0.06)ab 8.03(0.52)b 9.33(0.92)a -0.26(r2 = 0.50,P = 0.11) -0.29(r2 = 0.59,P = 0.07) -0.16(r2 = 0.54,P = 0.10)

20–40 8.96(0.85)a 7.45(0.92)a 8.18(0.52)a -0.10(r2 = 0.07,P = 0.62) -0.31(r2 = 0.45,P = 0.15) 0.04(r2 = 0.00,P = 0.90)

40–60 7.77(0.38)b 7.07(0.52)b 9.33(0.98)a -0.15(r2 = 0.06,P = 0.64) -0.81(r2 = 0.54,P = 0.10) 0.50(r2 = 0.16,P = 0.43)
0–60 8.64(0.41)a 8.06(0.47)a 8.91(0.60)a -0.15(r2 = 0.20,P = 0.37) -0.33(r2 = 0.57,P = 0.08) 0.08(r2 = 0.03,P = 0.72)

† NTRRM, no-tillage with residue removed and manure added; NTR, no-tillage with residue; CTRR, conventional tillage with residue removed.
‡ Values are means with the standard deviation in parenthesis (n = 3). 
§ Different letters in a row designate significantly differences (P < 0.05) among treatments for the same soil depth.
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layer, as has been previously reported (Gál et al., 2007; Machado 
et al., 2003). Gál et al. (2007) found a remarkable 23% greater 
SOC under CT treatment than NT in 30- to 50-cm soil depth, 
but NT gained more SOC than CT in the surface soil, and there 
was no significant difference between NT and CT in the SOC 
pools for the 0- to 50-cm soil profile. In this study, similar trends 
in SOC pools were observed in that accumulations with time 
at the surface (0–5 cm) were reversed to depreciation with time 
below 10 cm for NTRRM and NTR. Tillage incorporates crop 
residues (shallow roots and stubble) from the soil surface into the 
subsoil where the residues could be mineralized and stabilized as 
soil organic matter (Angers et al., 1997; Lorenz et al., 2005).

Which factors determine the change of SOC pool in the 
subsoil? For the effects on SOC pool in the subsoil, belowground 
biomass plays a main role (Amos and Walters, 2006; Gale et al., 
2000). Kong and Six (2010) found that more than 50% of the 
root-derived C still remained in soil while only 4% residue-
derived C was in the soil by the end of the experiment. Many 
researchers (Ball-Coelho et al., 1998; de Rouw et al., 2010; Qin 
et al., 2005, 2006) have found that NT crops have greater root 
density near the surface. These differences in distribution of 
maize and wheat roots under NT or CT treatments could result 
in different SOC distributions with depth (Baker et al., 2007). 
Differences in rooting depth distributions is why VandenBygaart 
et al. (2011) recommended sampling deeper than 15 cm 
for perennial crops in Canada. Wu et al. (2008) studied the 

change of SOC pools in two long-term (55 and 90 yr) irrigated 
regions of California. They concluded that long-term irrigation 
could significantly increase SOC pools in deeper (25–60 cm) 
soil depths as compared to native soils due to differences in rooting 
density with depth. In this study, although the surface soil was covered 
by crop residue under NTR and manure under NTRRM, lack of 
incorporation into the subsoil meant that these crop roots could not 
compensate for the SOC losses with depth (de Rouw et al., 2010).

In the whole soil profile (0–60 cm), NTRRM and NTR 
treatments accumulated total N in a similar rate with CTRR 
during the 6 yr (Table 4). This indicated that dry manure and 
mineral fertilizer sufficiently replaced the crop residue left on 
the surface with NTR. Although changes in C/N ratios with 
time were not significant, there were some interesting trends 
that could produce differences if continued beyond the 6-yr 
study period. The NTRRM and NTR treatments exhibited a 
declining trend in C/N ratio for the whole profile (0–60 cm) 
although NTR did exhibit a positive change in the 0- to 2.5-
cm depth which could be the result of slower mineralization 
of crop residues in the surface (Blanco-Canqui and Lal, 2008; 
Torbert et al., 1997). A slight positive change (0.08 yr–1) of C/N 
ratio was observed for the profile (0–60 cm) in CTRR. Follett 
et al. (2005) also observed similar trends of C/N ratio change 
between NT and CT treatments after a 5 yr tillage management. 
In contrast to Wright et al. (2007) and de Rouw et al. (2010), C/N 
ratio trended to be greater in CTRR than those in NTRRM and 

Fig. 4. Effects of tillage-residue management on grain yield and aboveground biomass of (A) wheat and (B) maize from 2004 to 2009. Error bars 
represent standard deviation. Different letters in a year designate significant differences (P < 0.05) between tillage treatments (P < 0.05); ND 
stands for no data.
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NTR in 0- to 60-cm soil profile in this study but the differences were 
not significant.

Manure Substituted for Crop Residue in No-Tillage
Application of manure as a nutrient source in no-tillage 

system could increase the soil C pool (Sainju et al., 2008; 
Thelen et al., 2010). After 10 yr, Sainju et al. (2008) found that 
treatments with poultry litter could sequester more SOC and 
N compared with inorganic N fertilizer regardless of tillage. 
In this study, the results indicated that a small amount of dry 
manure (4 Mg ha–1 yr–1) could replace crop residue input and 
compensate for the C, N, and other nutrients lost due to residue 
removal, thereby enabling similar grain yield and aboveground 
biomass production as when crop residues are left on croplands 
(Fig. 4). Reasonable use of crop residue is important for many 
aspects: forage, biofuel production, protecting soil from erosion 
(Lal, 2009), and sustainable agriculture. There has been a concern 
about whether the residue from double-cropped systems should 
be used to produce biofuels (Lal and Pimentel, 2009; Tilman et 
al., 2009). These results provide a potential solution for a level 
double-cropped region where soil erosion is not a concern, but 
needs more time to assess the long-term effects on soil fertility 
and agriculture productivity.

CONCLUSIONS
This 6-yr study measured the change of SOC and total N 

pools under no-tillage with residue replaced by manure, no-
till with residue left on the surface, and conventional tillage 
with residue removed in the NCP, and their impact on crop 
productivity and biomass production. Soil under NTRRM and 
NTR treatments had greater SOC and total N than CTRR 
in the surface (0–5 cm). However, these patterns were not 
reflective of the subsoil SOC and total N concentrations. As 
a result, SOC pools for the whole soil profile (0–60 cm) were 
significantly different in the order CTRR > NTRRM > NTR, 
whereas differences in total N pools were not significant. These 
data reveal the importance of quantifying the entire soil profile 
to validly evaluate the role of tillage and residue management in 
the NCP.

These data supported the following conclusions for the NCP 
region: (i) NTRRM and NTR only sequestered more SOC and 
total N in the surface (0–5 cm) than CTRR; and the subsoil (5–
60 cm) exhibited a net loss of SOC in NTR treatments, whereas 
CTRR could sequester SOC over the entire 60-cm depth; 
(ii) Using a fixed small amount of manure (4 Mg ha–1 yr–1) 
under no-tillage to substitute for the crop residue removed for 
the NTR treatment (10 Mg ha–1 yr–1) resulted in more SOC 
sequestration; (iii) CTRR was more effective than NTRRM 
and NTR in SOC sequestration; and (iv) use of no-tillage with 
residue or with manure substituting for residue removed did not 
produce significantly better yields or biomass production than 
conventional tillage with residue removed and the only occasions 
in which significant differences were observed, the conventional 
tillage system was superior.

These results help in understanding and estimating the 
effects of tillage-residue management on the SOC pools in 
subsoil and the whole soil profile in the NCP. However, further 
research should be performed in near future, such as accessing 
the effects of microbial decomposer communities on SOC 
losses, and defining the lower limit for using crop residues with 
no-tillage in this region. Sustainable agriculture in the NCP 
is important to food security in China; altough, 6-yr study 
indicated conventional tillage with residue removed was siutable 
in the NCP, additional long-term studies on the effects of tillage 
and residue management on SOC pools are seriously needed in 
the region.
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